Asymmetric Autocatalysis Triggered by Carbon Isotope (¹³C/¹²C) Chirality

Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito, M.; Soai, K. *Science*, **2009**, *324*, 492.

Asymmetric Autocatalysis Triggered by Carbon Isotope (¹³C/¹²C) Chirality

Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito, M.; Soai, K. *Science*, **2009**, *324*, 492.

Asymmetric Autocatalysis Triggered by Carbon Isotope (¹³C/¹²C) Chirality

Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito, M.; Soai, K. *Science*, **2009**, *324*, 492.

The Homochirality Remains a Puzzle...

The Homochirality Remains a Puzzle...

All the 20 natural amino acids are left-handed.

A proposed theory to explain the origin of the homochirality:

- 1st step Shattering the mirror: Absolute Asymmetric Synthesis
- 2nd step Propagating the imbalance: Asymmetric Autocatalysis

Blackmond, D. G. PNAS, 2004, 101, 5732-5736.

Asymmetric Autocatalysis and Its Implications for the Chemical Origin of Life

Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Nature, 1995, 378, 767-768.

Asymmetric Autocatalysis Triggered by Carbon Isotope (¹³C/¹²C) Chirality

Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito, M.; Soai, K. *Science*, **2009**, *324*, 492.

Generation of Chirality by Carbon Isotope Substitution

Problem:

Experimentally inaccessible: very small difference between ¹³C and ¹²C

Solution:

Asymmetric Autocatalysis

Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito, M.; Soai, K. *Science*, **2009**, *324*, 492.

Discrimination of the Carbon Isotopic Chirality by Asymmetric Autocatalysis

Discrimination of the Carbon Isotopic Chirality by Asymmetric Autocatalysis

Discrimination of the Carbon Isotopic Chirality by Asymmetric Autocatalysis

Synthesis of Compound 1---Route 1

Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito, M.; Soai, K. *Science*, **2009**, *324*, 492.

Synthesis of Compound 1---Route 2

Synthesis of Compound 2

Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito, M.; Soai, K. *Science*, **2009**, *324*, 492.

Synthesis of Compound 3

Hong Ren @ Wulff Group

Chiral Discrimination of the Isotopic Carbons Using Compound 1 from Route 1

Entry	Chiral alcohol	Isolated yield	ee	configurition
1	(<i>R</i>)-1 (89% ee)	94	92	S
2	(S)-1 (93% ee)	95	96	R
3	(<i>R</i>)-1 (89% ee)	80	88	S
4	(S)-1 (93% <i>ee</i>)	94	96	R
5	(<i>R</i>)-1 (89% ee)	96	88	S
6	(S)-1 (93% <i>ee</i>)	97	94	R
7	(<i>R</i>)-1 (89% ee)	ND	93	S
8	(S)-1 (93% ee)	92	93	R

Chiral Discrimination of the Isotopic Carbons Using Compound 1 from Route 2

Entry	Chiral alcohol	Isolated yield	ee	configurition
1	(<i>R</i>)-1 (86% ee)	94	94	S
2	(S)-1 (86% <i>ee</i>)	87	95	R
3	(<i>R</i>)-1 (86% <i>ee</i>)	93	94	S
4	(S)-1 (90% ee)	98	93	R
5	(<i>R</i>)-1 (86% <i>ee</i>)	85	92	S
6	(S)-1 (84% <i>ee</i>)	93	88	R
7	(<i>R</i>)-1 (86% <i>ee</i>)	88	89	S
8	(S)-1 (90% ee)	93	90	R

Wine Time

